Probabilistic Graphical Models

Lecture 2

Probabilistic Modeling

How to model?

How to model dependency structures?

Mathematical Tools for modeling

- Variables
- Functions, Time series, Signals \& Systems
- (ordinary, differential, integral) equations

Example:

Uncertainty

- Problems including uncertainty, hidden variables,
- Unknown factors,
- All factors cannot be exactly measured,
- Complex factors or relations that are too hard to model

Example:

$$
\mathbf{x}=\frac{\mathbf{f}}{2 m} t^{2}+\mathbf{v}_{0} t+\mathbf{x}_{0}
$$

where

$$
\mathbf{f}=\mathbf{f}_{\mathrm{known}}+\mathbf{f}_{\text {wind }}
$$

Probabilistic Models

- Model probabilistic uncertainty/randomness
- Random Variables
- Distributions

Random Variables

- Profit = Revenue - Cost
- Revenue $=f(n)$
- Cost = $g(n)$
- n : number of packages produced per day
- Ordinary (deterministic) Variables:
- $n=244$
- Random Variables:
- $n=243$ with a probability of $1 / 6$
- $n=244$ with a probability of $3 / 6$
- $n=245$ with a probability of $2 / 6$

Random Variables

- Ordinary (deterministic) Variables:
- $n=244$
- Random Variables:
- $n=243$ with a probability of $1 / 6$
- $n=244$ with a probability of $3 / 6$
- $n=245$ with a probability of $2 / 6$
- Mathematical Operations
- addition, subtraction, multiplication, etc.
- functions
- reasoning

Representing Random Variables

- Random Variables:
- $n=243$ with a probability of $1 / 6$
- $n=244$ with a probability of $3 / 6$
- $n=245$ with a probability of $2 / 6$
- Probability Distribution
- Probability Mass Function
- $\mathrm{p}=\{(243,1 / 6),(244,3 / 6),(245,2 / 6)\}$
- $p(243)=1 / 6$

Representing Random Variables

- Random Variables:
- $n=243$ with a probability of $1 / 6$
- $n=244$ with a probability of $3 / 6$
- $n=245$ with a probability of $2 / 6$
- Probability Distribution
- Probability Mass Function
- $p=\{(243,1 / 6),(244,3 / 6),(245,2 / 6)\}$
- $p(243)=\operatorname{Pr}(\mathrm{N}=243)=1 / 6$

Representing Random Variables

- Random Variables:
- $n=243$ with a probability of $1 / 6$
- $n=244$ with a probability of $3 / 6$
- $n=245$ with a probability of $2 / 6$
- Ordinary variables as special case of random variables:

Representing Random Variables

Toosi

- Random Variables:
- $n=243$ with a probability of $1 / 6$
- $n=244$ with a probability of $3 / 6$
- $n=245$ with a probability of $2 / 6$
- Ordinary variables as special case of random variables:
- $n=243$ with a probability of 0
- $n=244$ with a probability of 1
- $n=245$ with a probability of 0

Continuous Random Variables

$$
\begin{aligned}
& \text { - } \mathrm{x}=\frac{\mathbf{f}}{2 m} t^{2}+\mathbf{v}_{0} t+\mathbf{x}_{0} \\
& \text { - } \mathrm{f}=\mathrm{f}_{\mathrm{known}}+\mathrm{f}_{\mathrm{wind}} \\
& \text { - } \mathrm{f}_{\mathrm{wind}}=\text { ? }
\end{aligned}
$$

Continuous Random Variables

$$
\begin{aligned}
& \text { - } \mathbf{x}=\frac{\mathbf{f}}{2 m} t^{2}+\mathbf{v}_{0} t+\mathbf{x}_{0} \\
& \text { - } \mathbf{f}=\mathbf{f}_{\text {known }}+\mathbf{f}_{\text {wind }} \\
& \text { - } \mathrm{f}_{\text {wind }}=\text { ? }
\end{aligned}
$$

Continuous Random Variables

$$
\begin{aligned}
& \text { - } \mathrm{x}=\frac{\mathbf{f}}{2 m} t^{2}+\mathbf{v}_{0} t+\mathbf{x}_{0} \\
& \text { - } \mathrm{f}=\mathrm{f}_{\mathrm{known}}+\mathrm{f}_{\text {wind }} \\
& \text { - } \mathrm{f}_{\text {wind }}=\text { ? }
\end{aligned}
$$

Continuous Random Variables

- the probability of a variable being in a certain interval is of interest,
- Probability Density Function (PDF)
$\operatorname{Pr}(\mathrm{a} \leq \mathrm{x} \leq \mathrm{b})=\int_{x \in(a, b)} p(x) d x$

Continuous Random Variables

- In continuous case, mostly the probability of a variable being in a certain interval is of interest,
- Probability Density Function (PDF)

$$
\begin{aligned}
\operatorname{Pr}(\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}) & =\int_{x \in(a, b)} p(x) d x \\
\operatorname{Pr}(x \in S) & =\int_{S} p(x) d x
\end{aligned}
$$

The joint probability distribution

- Question
- $\operatorname{Pr}(X=a)=1 / 2$ $\operatorname{Pr}(Y=b)=1 / 4$
- what is $\operatorname{Pr}(X=a$ AND $Y=b)$?

The joint probability distribution

K. N. Toosi

- Question
- $\operatorname{Pr}(X=a)=1 / 2$

$$
\operatorname{Pr}(Y=b)=1 / 4
$$

- what is $\operatorname{Pr}(X=a$ AND $Y=b)$?

First Scenario: Roll a (fair) dice twice

- X : first number, Y : second number
- $\operatorname{Pr}(X=6$ AND $Y=1)=$?

The joint probability distribution

- Question
- $\operatorname{Pr}(X=a)=1 / 2$

$$
\operatorname{Pr}(Y=b)=1 / 4
$$

- what is $\operatorname{Pr}(X=a$ AND $Y=b)$?

First Scenario: Roll a (fair) dice twice

- X : first number, Y : second number
- $\operatorname{Pr}(X=6$ AND $Y=1)=\operatorname{Pr}(X=6) P(Y=1)=1 / 6 * / 6=1 / 36$

The joint probability distribution

- Question
- $\operatorname{Pr}(X=a)=1 / 2$

$$
\operatorname{Pr}(Y=b)=1 / 4
$$

- what is $\operatorname{Pr}(X=a$ AND $Y=b)$?

Second Scenario (missing exam => failing course)

- $\operatorname{Pr}($ miss exam session $)=0.01$

$$
\operatorname{Pr}(\text { fail course })=0.08
$$

- Pr (miss exam session AND fail course) $=$?

The joint probability distribution

- Question
- $\operatorname{Pr}(X=a)=1 / 2$

$$
\operatorname{Pr}(Y=b)=1 / 4
$$

- what is $\operatorname{Pr}(X=a$ AND $Y=b)$?

Second Scenario (missing exam => failing course)

- $\operatorname{Pr}($ miss exam session $)=0.01$

$$
\operatorname{Pr}(\text { fail course })=0.08
$$

- $\operatorname{Pr}($ miss exam session AND fail course $)=0.01$

The joint probability distribution

- Question
- $\operatorname{Pr}(X=a)=1 / 2$

$$
\operatorname{Pr}(Y=b)=1 / 4
$$

- what is $\operatorname{Pr}(X=a$ AND $Y=b)$?

Second Scenario (missing exam => failing course)

- $\operatorname{Pr}($ miss exam session $)=0.01$

$$
\operatorname{Pr}(\text { fail course })=0.08
$$

How the first and second scenarios are different?

- $\operatorname{Pr}($ miss exam session AND fail course $)=0.01$

The joint probability distribution

- The probability of co-occurrence.
- If we have two random variables X, Y we cannot model the system using $\operatorname{Pr}(X=x)$ and $\operatorname{Pr}(Y=y)$.
- Probability mass function (Discrete Variables)
- $p(x, y)=\operatorname{Pr}(X=x$ AND $Y=y)=\operatorname{Pr}(X=x, Y=y)$
- Probability Density function (Continuous Variables)
- $p(x, y)$

The joint probability distribution

- Probability Density function (Continuous Variables)

$$
\operatorname{Pr}((x, y) \in S)=\int_{S} p(x, y) d x d y
$$

Probabilistic Modelling

- System variables $X_{1}, X_{2}, \ldots, X_{N}$
- Generative Model: Joint distribution p $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$
- If you have the joint distribution, you have everything
- Prediction:
- Having $p(x, y, z)=\operatorname{Pr}(X=x, y=y, Z=z)$, predict x, y, z

Probabilistic Modelling

- System variables $X_{1}, X_{2}, \ldots, X_{N}$
- Generative Model: Joint distribution p $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$
- If you have the joint distribution, you have everything
- Prediction:
- Having $p(x, y, z)=\operatorname{Pr}(X=x, y=y, Z=z)$, predic $\dagger x, y, z$
- Find the most likely configuration of system variables

Probabilistic Modelling

- System variables $X_{1}, X_{2}, \ldots, X_{N}$
- Generative Model: Joint distribution p $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$
- If you have the joint distribution, you have everything
- Prediction:
- Having $p(x, y, z)=\operatorname{Pr}(X=x, y=y, Z=z)$, predict x, y, z
- Find the most likely configuration of system variables

$$
x^{*}, y^{*}, z^{*}=\arg \max _{x, y, z} p(x, y, z)
$$

Probabilistic Modelling

- System variables $X_{1}, X_{2}, \ldots, X_{N}$
- Generative Model: Joint distribution p $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$
- If you have the joint distribution, you have everything
- Prediction:
- Having $p(x, y, z)=\operatorname{Pr}(X=x, Y=y, Z=z)$
- If we know $Z=Z_{0}$, predict x, y

Probabilistic Modelling

- System variables $X_{1}, X_{2}, \ldots, X_{N}$
- Generative Model: Joint distribution $p\left(x_{1}, x_{2}, \ldots, x_{N}\right)$
- If you have the joint distribution, you have everything
- Prediction:
- Having $p(x, y, z)=\operatorname{Pr}(X=x, Y=y, Z=z)$
- If we know $Z=Z_{0}$, predict x, y

$$
x, y=\arg \max _{x, y} p\left(x, y, z_{0}\right)
$$

Probabilistic Modelling

1. ?

Probabilistic Modelling

1. learning/modeling:

- find $p\left(x_{1}, x_{2}, \ldots, x_{m}, y\right)$

2.

Probabilistic Modelling

1. learning/modeling:

- find $p\left(x_{1}, x_{2}, \ldots, x_{m}, y\right)$

2. prediction/testing

Probabilistic Modelling

1. learning/modeling:

- find $p\left(x_{1}, x_{2}, \ldots, x_{m}, y\right)$

2. prediction/testing

Probabilistic Modelling

1. learning/modeling:

$$
\text { - find } p\left(x_{1}, x_{2}, \ldots, x_{m}, y\right)
$$

2. prediction/testing

$$
y^{*}=\arg \max _{y} p\left(x_{1}, x_{2}, \ldots, x_{m}, y\right)
$$

Probabilistic Modelling

Probabilistic Modelling

1. learning/modeling:
2. prediction/testing

Probabilistic Modelling

1. learning/modeling:

- find $p\left(x_{1}, x_{2}, \ldots, x_{m}, y_{1}\right)$
- find $p\left(x_{1}, x_{2}, \ldots, x_{m}, y_{2}\right)$:find $p\left(x_{1}, x_{2}, \ldots, x_{m}, y_{n}\right)$

2. prediction/testing

Probabilistic Modelling

1. learning/modeling:

- find $p\left(x_{1}, x_{2}, \ldots, x_{m}, y_{1}\right)$
- find $p\left(x_{1}, x_{2}, \ldots, x_{m}, y_{2}\right)$

O :

- find $p\left(x_{1}, x_{2}, \ldots, x_{m}, y_{n}\right)$

2. prediction/testing

$$
\begin{aligned}
& y_{1}^{*}=\arg \max _{y_{1}} p\left(x_{1}, \ldots, x_{m}, y_{1}\right) \\
& y_{2}^{*}=\arg \max _{y_{2}} p\left(x_{1}, \ldots, x_{m}, y_{2}\right) \\
& y_{n}^{*}=\arg \max _{y_{n}} p\left(x_{1}, \ldots, x_{m}, y_{n}\right)
\end{aligned}
$$

Probabilistic Modelling

1. learning/modeling:
2. prediction/testing

Probabilistic Modelling

1. learning/modeling:

- find $p\left(x_{1}, x_{2}, \ldots, x_{m^{\prime}}, y_{1}, y_{2}, \ldots, y_{n}\right)$

2. prediction/testing

Probabilistic Modelling

1. learning/modeling:

- find $p\left(x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}\right)$

2. prediction/testing
$y_{1}^{*}, y_{2}^{*}, \ldots, y_{n}^{*}=\arg \max _{y_{1}, \ldots, y_{n}} p\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)$

Probabilistic Modelling

1. learning/modeling:

- find $p\left(x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}\right)$

2. prediction/testing
$y_{1}^{*}, y_{2}^{*}, \ldots, y_{n}^{*}=\arg \max _{y_{1}, \ldots, y_{n}} p\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)$
$y_{i} \in\{0,1\}, n=100$

Probabilistic Modelling

1. learning/modeling:

- find $p\left(x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}\right)$

2. prediction/testing
$y_{1}^{*}, y_{2}^{*}, \ldots, y_{n}^{*}=\arg \max _{y_{1}, \ldots, y_{n}} p\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)$ $y_{i} \in\{0,1\}, n=100$

- argmax over $2^{100} \approx 10^{30}$ different combinations of $y_{1}, y_{2}, \ldots, y_{n}$

Probabilistic Modelling

1. learning/modeling:

- find $p\left(x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}\right)$

2. prediction/testing
$y_{1}^{*}, y_{2}^{*}, \ldots, y_{n}^{*}=\arg \max _{y_{1}, \ldots, y_{n}} p\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)$
$y_{i} \in\{0,1\}, n=100$

- argmax over $2^{100} \approx 10^{30}$ different combinations of $y_{1}, y_{2}, \ldots, y_{n}$
- $10^{12}=10006$ iterations per second $\rightarrow 32$ billion years!

Model Representation

$$
p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \quad x_{i} \in 0,1
$$

- How to store in computer?

Tabular representation

 $p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \quad x_{i} \in 0,1$- $m=3$---> 8 entries

x_{1}	x_{2}	x_{3}	$p\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0.10
0	0	1	0.01
0	1	0	0.08
0	1	1	0.21
1	0	0	0.30
1	0	1	0.14
1	1	0	0.14
1	1	1	0.02

Tabular representation

 $p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \quad x_{i} \in 0,1$- $m=3$---> 8 entries
- 2^{m} entries

x_{1}	x_{2}	x_{3}	$p\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0.10
0	0	1	0.01
0	1	0	0.08
0	1	1	0.21
1	0	0	0.30
1	0	1	0.14
1	1	0	0.14
1	1	1	0.02

Tabular representation

 $p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \quad x_{i} \in 0,1$- $m=3$---> 8 entries
- 2^{m} entries
- $m=100$--->

$$
x_{i} \in 0,1
$$

x_{1}	x_{2}	x_{3}	$p\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0.10
0	0	1	0.01
0	1	0	0.08
0	1	1	0.21
1	0	0	0.30
1	0	1	0.14
1	1	0	0.14
1	1	1	0.02

Tabular representation

$$
p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \quad x_{i} \in 0,1
$$

- $m=3$---> 8 entries
- 2^{m} entries
- $m=100$---> 2^{100} entries $\approx 10^{21} G$ entries

x_{1}	x_{2}	x_{3}	$p\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0.10
0	0	1	0.01
0	1	0	0.08
0	1	1	0.21
1	0	0	0.30
1	0	1	0.14
1	1	0	0.14
1	1	1	0.02

Tabular representation

$$
p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \quad x_{i} \in 0,1
$$

- $m=3$---> 8 entries
- 2^{m} entries
- $m=100$---> 2^{100} entries $\approx 10^{21} G$ entries
- 1 byte per entry -> 10^{21} GB of RAM!

x_{1}	x_{2}	x_{3}	$p\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0.10
0	0	1	0.01
0	1	0	0.08
0	1	1	0.21
1	0	0	0.30
1	0	1	0.14
1	1	0	0.14
1	1	1	0.02

